WOT-Class: Weakly Supervised Open-world Text Classification

Tianle Wang^{1,2}, Zihan Wang², Weitang Liu², Jingbo Shang²

¹Shanghai Jiao Tong University

²University of California, San Diego

¹wtl666wtl@sjtu.edu.cn

²{tiw054, ziw224, wel022, jshang}@ucsd.edu

CIKM '23, October 21–25, 2023, Birmingham, United Kingdom

Agenda

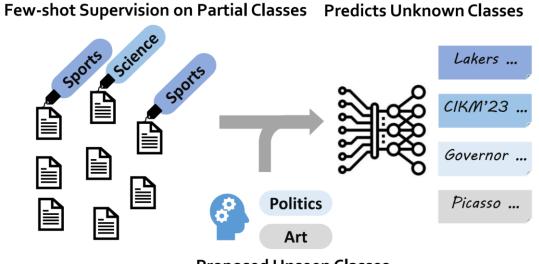
- Motivation
- Main Contribution
- Problem Formulation
- Methodology
- Evaluation
- Conclusion

Motivation

- Weakly supervised text classification methods quickly developed these years and significantly reduced the required human supervision
- However, All these methods require human-provided known classes cover all the classes of interest
- Difficult in the real world! E.g., the human expert could be exploring a new, large corpus without a complete picture

Motivation

• How to resolve this problem? Ask machine to find unknown classes!



Proposed Unseen Classes

 The open-world setting here releases the all-class requirement, further reducing the required human effort in weakly supervised text classification.

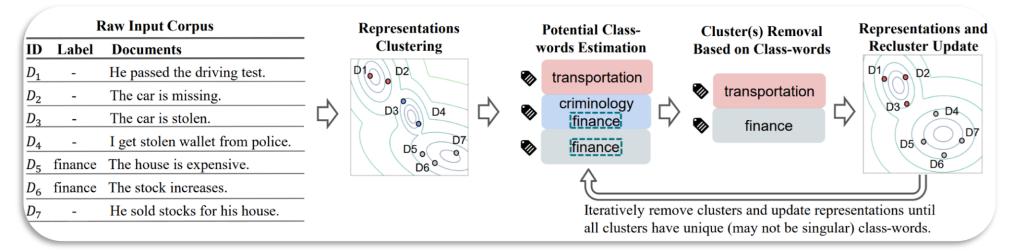
Main Contribution

- We introduce the novel yet important problem of weakly supervised open-world text classification
- We propose a novel, practical framework WOT-Class and extensive experiments demonstrate its power

Problem Formulation

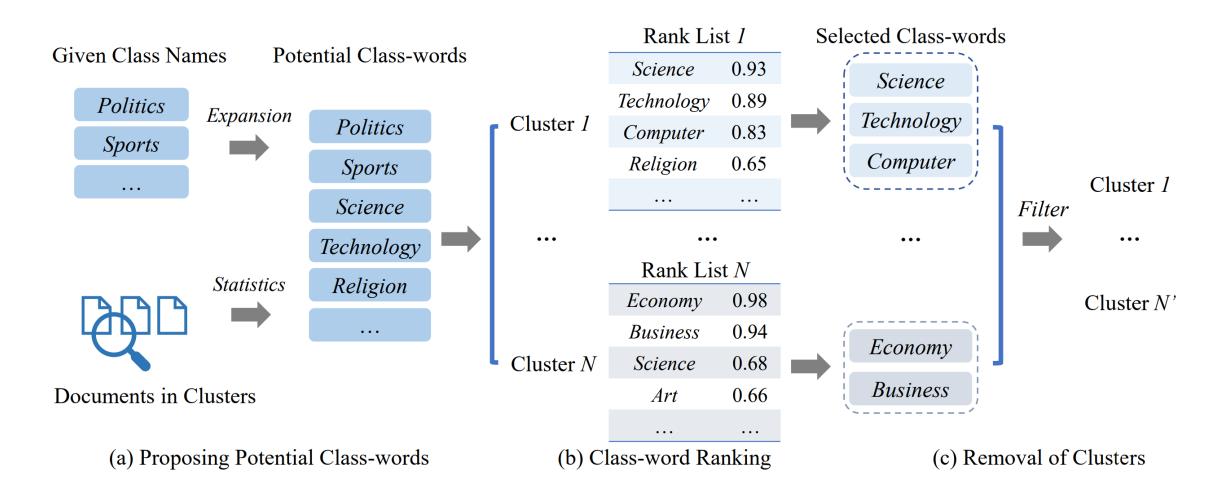
- There exists a not-fully-known set of classes *C*, which follow the same hyper-concept and a set of documents *D*, each uniquely assigned to a class.
- A weakly supervised open-world model can observe partial information of C. In this work, the information is given as a labeled few-shot dataset Ds = {x_i, y_i}ⁿ_{i=1}, y_i ∈ Cs, where Cs ⊂ C is the known subset of classes and n is rather small.
- The goal of the model is to classify the remainder of the dataset, $Du = D \setminus Ds$, where some of the labels in $Cu = C \setminus Cs$ is completely unknown to the model.

Overview of WOT-Class



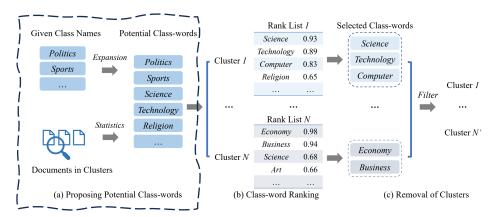
- Overestimate the number of classes and give a rough clustering
- Find class-indicative words for each cluster and delete redundant ones
 - Propose potential class-words
 - Rank class-words in each cluster
 - Remove redundant clusters based on class-words
- Utilize WS-TC method for keyword-based text classification (clustering)

Methodology



Propose Potential Class-words

- Class-words are words that are related to or highly indicative of the class (cluster):
 - Semantics: Entity expansion algorithms (e.g., CGExpan) generate words under the same semantic hyper-concept of known class names
 - Statistics: TF-IDF liked methods find statistically representative words within each cluster
- Merged as the set of potential class-words



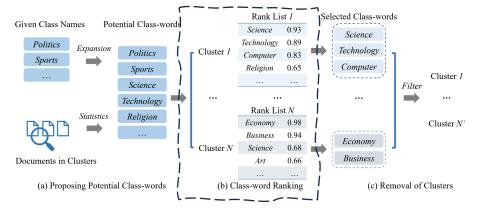
Class-word Ranking

- We construct a MLP to compute the similarity score p(w,i) between a cluster i and a potential class-word w:
 - Feature Design: Select a large list of keyword in cluster, compute cos similarity and distance between potential words and these words as features
 - **Training Dataset**: Utilize the few-shot supervision to build virtual clusters, positive sample is given class name, negative sample is the furthest word
- Further design a penalty coefficient $\mu(w,i)$ to penalize generic words:

$$\mu(w,i) = \log\left(\frac{M \left\{rank_{j}(w) \mid 1 \leq j \leq C\right\}}{1 + rank_{i}(w)}\right)$$

• Final indicativeness ranking is based on:

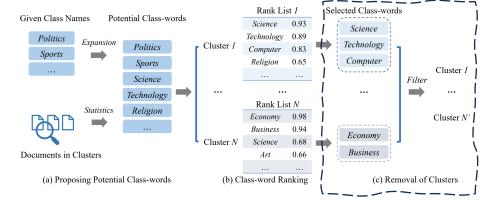
 $I(w, i) = p(w, i) \times \mu(w, i).$



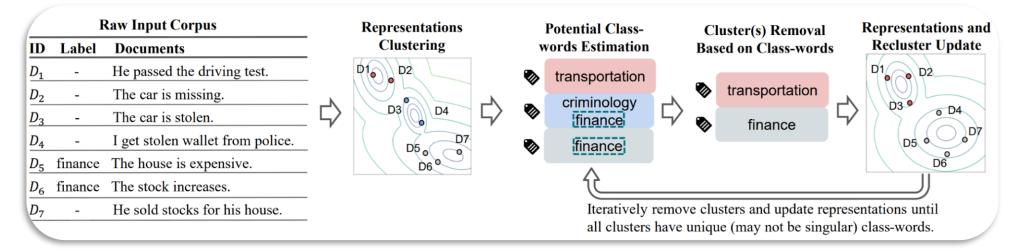
Removal of Clusters

- In simple terms, we remove clusters that have non-empty
 - intersections in the class-words:
 - After ranking, we pick the *T* highest ranked class-words for a cluster to compare, where *T* is the number of iterations in the removal process
 - We introduce a cutoff threshold β such that we do not pick words that have a low ratio of score to the highest score in the cluster $1 \sum_{n=1}^{\infty} \sum_{n=1}^{\infty$
 - When overlapping, we remove the cluster with a low coherent η
- Re-rank the class words and continue the

process until no clusters require removal



Iterative Framework



- After identifying unique class-words for each cluster, we apply the seedword driven text classification method (e.g., X-Class) to update the clusters
- The whole iterative framework ends until it can no longer remove clusters. We then train a final text classifier based on the pseudo-labels assigned to each text

Experimental Setting

• Dataset

- 7 popular datasets
- from different textual sources and criteria of classes

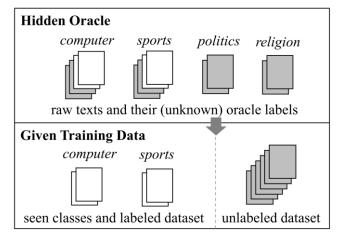
Compared Methods

- 3 open-world methods adapted from image field: Rankstats+, ORCA, GCD
- 2 solid baseline in text field: BERT+Clustering (GMM/SVM)

/	AGNews	20News	NYT-Small	NYT-Topics	NYT-Locations	Yahoo	DBpedia
Corpus Domain	News	News	News	News	News	QA	Wikipedia
Class Criterion	Topics	Topics	Topics	Topics	Locations	Topics	Ontology
# of Classes	4	5	5	9	10	10	14
# of Documents	12,000	17,871	13,081	31,997	31,997	18,000	22,400
Imbalance	1.00	2.02	16.65	27.09	15.84	1.00	1.00

Experimental Setting

- Make the most infrequent half of classes as unseen
- Among the seen classes, we give 10-shot supervision
- Since all compared methods require the total number of classes as input, we evaluate them in two ways:
 - Our Estimation (OE)
 - Baselines' Estimation
- Evaluation: calculate the F1 Score after maximum matching



Overall Performance

- WOT-Class performs noticeably better than SOTA general methods and BERT+Clustering baselines
- Gains a 23.33% greater average absolute macro-F1 over the current best method across all datasets

Method	Extra Info	AGNews	20News	NYT-S	NYT-Top	NYT-Loc	Yahoo	DBpedia	Average
Rankstats+		39.53/28.55	24.94/13.88	52.01/23.13	42.23/19.98	39.68/23.13	29.66/20.44	48.20/39.15	39.47/24.04
ORCA	×	72.44/72.27	48.92/39.83	74.34/42.22	62.23/39.02	58.71/44.81	35.57/32.71	69.27/67.92	60.21/48.40
GCD	^	66.37/66.51	51.75/42.96	82.59/63.35	66.36/39.69	70.25/53.41	36.73/35.39	75.81/72.97	64.27/53.47
WOT-Class		79.42/79.75	79.07/79.29	94.78/88.46	78.67/69.48	80.94/79.55	54.46/56.23	85.15/84.87	78.93/76.80
Rankstats+ (OE)		+5.52 61.44/57.50	% +36.33 53.65/38.12	% +25.11 40.82/31.67	.% +29.7 9 19.93/15.07	3% +26.1 4 21.96/16.81	*20.8 32.79/26.94	4% +11.9 50.03/44.31	0% + 23.33 40.09/32.92
ORCA (OE)		64.38/64.50	51.85/40.04	70.44/46.21	59.42/38.29	42.99/33.08	43.87/41.43	82.54/81.30	59.35/49.26
GCD (OE)	# of Classes	65.42/65.44	61.27/56.42	78.82/56.59	70.51/42.44	55.37/44.86	39.01/37.58	84.14/83.60	64.93/55.28
BERT+GMM (OE)		38.25/37.14	29.32/25.21	58.79/24.79	26.88/14.08	11.64/9.47	14.11/13.64	14.74/14.20	27.68/19.79
BERT+SVM (OE)		45.20/44.15	39.07/34.96	51.97/22.34	24.95/12.83	13.91/7.45	15.25/13.39	16.28/14.41	29.52/21.36

CIKM '23, October 21–25, 2023, Birmingham, United Kingdom

Imbalance Tolerance

• We construct 3 imbalanced DBpedia datasets with different degrees of imbalance

Low	Medium	High
2%	4%	6%
19,480	16,565	13,652
1.35	2.09	4.56
	2% 19,480	2% 4% 19,480 16,565

• WOT-Class reaches the lowest performance drop compared with ORCA and GCD's Pareto optimal w/ & w/o extra info

Method	DBpedia		DBpedia-Low		DBpedia-Medium			DBpedia-High				
Method	All	Seen	Unseen	All	Seen	Unseen	All	Seen	Unseen	All	Seen	Unseen
ORCA	81.30	95.19	67.42	76.07	95.51	56.64	72.21	97.20	47.23	69.99	97.63	42.34
GCD	83.60	93.48	73.71	82.92	94.32	71.51	81.78	94.42	69.15	75.57	92.53	58.61
WOT-Class	84.87	87.16	82.59	85.81	91.82	79.97	84.97	93.31	76.63	- 8.03% 79.35	88.81	69.90
										-5.52%		

CIKM '23, October 21–25, 2023, Birmingham, United Kingdom

Prediction of # of Classes

Method	AGNews	20News	NYT-S	NYT-Top	NYT-Loc	Yahoo	DBpedia	Average Offset
Rankstats+	2.00_{0}	2.00_{0}	$2.33_{0.58}$	$4.33_{0.58}$	5 .00 ₀	5 .00 ₀	10.333.06	3.71
ORCA	69.00 _{6.08}	53.67 _{45.65}	39.33 _{32.35}	96.33 _{2.89}	94.67 _{3.21}	66.67 _{55.16}	$66.00_{3.61}$	62.48
GCD	23.33 _{2.89}	16.00 _{19.92}	59.33 _{17.01}	29.67 _{26.63}	$27.33_{9.24}$	$20.00_{16.64}$	$14.00_{3.46}$	19.81
WOT-Class	19.67 _{1.15}	$20.67_{0.58}$	$27.00_{2.89}$	$18.67_{3.61}$	$11.67_{0.58}$	$21.00_{2.00}$	$17.67_{2.89}$	11.33
Ground Truth	4	5	5	9	10	10	14	-

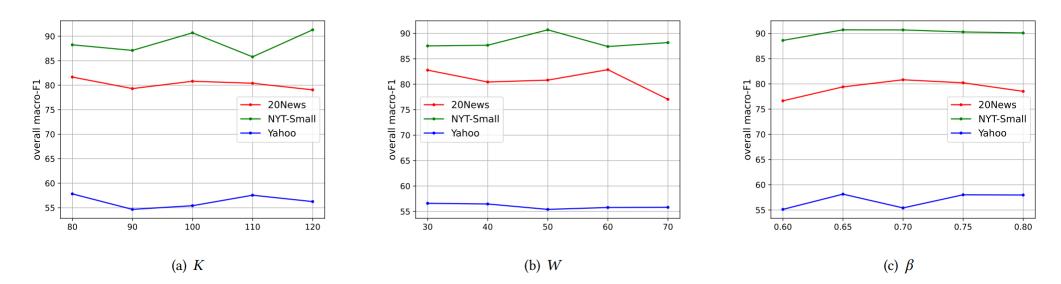
 Rankstats+, ORCA, and GCD's ability to estimate the number of classes in the fewshot setting is more unreliable

• Examples of class-words we find:

Dataset	Ground Truth	WOT-Class					
	Russia	[Ukraine, Russia]					
	Germany	[Germany]					
NYT-Loc	Canada	[Canada]					
	France	[France]					
	Italy	[Italy]					
	athlete	[footballer], [Olympics]					
	artist	[painting, painter, art], [tv, theatre, television]					
DProdie	company	<pre>[retail, company, business]</pre>					
DBpedia	school	[school, education, academic]					
	politics	[politician]					
	transportation	[aircraft, locomotive]					
、	building	[architecture, tower, church]					

Hyper-parameter Sensitivity

- Conduct our study on 20News, NYT-Small and Yahoo using a fixed random seed (42)
- The performance fluctuations remain within reasonable margins, basically under 5%



CIKM '23, October 21–25, 2023, Birmingham, United Kingdom

Conclusion

- We first introduce the challenging yet promising weakly supervised open-world classification task into text domain
- We have identified the key challenges and unique opportunities of this task and proposed WOT-Class that achieves quite decent performance with minimal human effort

Future Work

- Maybe open-world text classification can be conducted with even less manual annotation. For example, by only requiring user-provided hyper-concept (e.g., Topics, Locations) or custom instructions
- Open-world text classification is an emerging field, demanding more algorithms, datasets, evaluation metrics ... to truly unleash its potential

Thanks for your listening!

tiw054@ucsd.edu

CIKM '23, October 21–25, 2023, Birmingham, United Kingdom